Python
Type Hints
Slicing
l = list(range(8)) # NOT a numpy array
print(l) # the full list
print(l[4]) # fifth item in the list
print(l[-2]) # second item from the back of the list
print(l[:2]) # range -> first two items
print(l[3:5]) # range -> items 3 to 5 (exclusive)
print(l[1:7:2]) # range -> items 1 to 7 (exclusive), with stride 2 ("every other")Numpy Array Order
Sorry this looks messy! Probably never going to fix it!
numpy.zeros(shape, dtype=float, order='C', *, like=None)
Return a new array of given shape and type, filled with zeros.
Parameters:
shape int or tuple of ints
Shape of the new array, e.g., (2, 3) or 2.
dtype data-type, optional
The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64.
order {‘C’, ‘F’}, optional, default: ‘C’
Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.
like array_like, optional
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.Decorators
def mydecorator(func):
def wrapper(*args, **kwargs):
# Do something before calling the function
print(
f"Your function {func.__name__} is about to be called with arguments {args} and {kwargs}"
)
# Call the function
result = func(*args, **kwargs)
# Do something after calling the function
print(f"Your function {func.__name__} was called")
return result
return wrapper
@mydecorator
def myfunction():
print("Hello world")
@mydecorator
def myfunction2(x):
print(f"Hello {x}")
myfunction()
myfunction2("John")